skip to main content


Search for: All records

Creators/Authors contains: "Segura, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Soil water content (SWC) is a fundamental variable involved in several hydrological processes governing catchment functioning. Comparative analysis of hydrological processes in different catchments based on SWC data is therefore beneficial to infer driving factors of catchment response. Here, we explored the use of high‐temporal resolution SWC data in three forested catchments (2.4–60 ha) in different European climates to characterize hydrological responses during wet and dry conditions. The investigated systems include Ressi, Italy, with a humid temperate climate, Weierbach, Luxembourg, with a semi‐oceanic climate, and Can Vila, Spain, with a Mediterranean climate. We introduced a new SWC metric defined as the difference between seasonal mean SWC at a relatively shallow and a deep soil layer. The difference is classified in three distinct states: similar SWC between the two layers, higher SWC in the deeper layer, and higher SWC in the shallow layer. In the most humid site, Ressi, we frequently found similar SWC at the two soil depths which was associated with high runoff ratios. Despite similar precipitation amounts in Can Vila and Weierbach, SWC patterns were very different in both catchments. In Weierbach, SWC was similar across the entire soil profile during wet conditions, whereas evaporation of shallow water resulted in higher SWC in the deep soil layer during dry conditions. This led to high runoff ratios during wet conditions and low runoff ratios during dry conditions. In Can Vila, SWC was consistently higher in the deeper layer compared to the shallow layer, irrespective of the season, suggesting an important role of hydraulic redistribution and vertical water movement in this site. Our approach provides an easy and useful method to assess differences in hydrological behaviour solely based on SWC data. As similar datasets are increasingly collected and available, this opens the possibility for further analyses and comparisons in sites around the globe with contrasted physiographic and climate characteristics.

     
    more » « less
  2. Interactions between plants and herbivores are central in most ecosystems, but their strength is highly variable. The amount of variability within a system is thought to influence most aspects of plant-herbivore biology, from ecological stability to plant defense evolution. Our understanding of what influences variability, however, is limited by sparse data. We collected standardized surveys of herbivory for 503 plant species at 790 sites across 116° of latitude. With these data, we show that within-population variability in herbivory increases with latitude, decreases with plant size, and is phylogenetically structured. Differences in the magnitude of variability are thus central to how plant-herbivore biology varies across macroscale gradients. We argue that increased focus on interaction variability will advance understanding of patterns of life on Earth.

     
    more » « less
    Free, publicly-accessible full text available November 10, 2024
  3. Abstract

    This article presents the results of a week of observations around the 2 July 2019, total Chilean eclipse. The eclipse occurred between 19:22 and 21:46 UTC, with complete sun disc obscuration at 20:38–20:40 UTC (16:38–16:40 LT) over the Andes Lidar Observatory (ALO) at (30.3°S, 70.7°W). Observations were carried out using ALO instrumentation with the goal to observe possible eclipse‐induced effects on the mesosphere and lower thermosphere region (MLT; 75–105 km altitude). To complement our data set, we have also utilized TIMED/SABER temperatures and ionosonde electron density measurements taken at the University of La Serena's Juan Soldado Observatory. Observed events include an unusual fast, bow‐shaped gravity wave structure in airglow images, mesosphere temperature mapper brightness as well as in lidar temperature with 150 km horizontal wavelength 24 min observed period, and vertical wavelength of 25 km. Also, a strong zonal wind shear above 100 km in meteor radar scans as well as the occurrence of a sporadic E layer around 100 km from ionosonde measurements. Finally, variations in temperature and density and the presence of a descending sporadic sodium layer near 98 km were seen in lidar data. We discuss the effects of the eclipse in the MLT, which can shed light on a sparse set of measurements during this type of event. Our results point out several effects of eclipse‐associated changes in the atmosphere below and above but not directly within the MLT.

     
    more » « less